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ultivariate Pattern Analysis of Functional Magnetic
esonance Imaging Data Reveals Deficits in
istributed Representations in Schizophrenia

ong H. Yoon, Diana Tamir, Michael J. Minzenberg, J. Daniel Ragland, Stefan Ursu, and
ameron S. Carter

ackground: Multivariate pattern analysis is an alternative method of analyzing functional magnetic resonance imaging (fMRI) data, which
s capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed
epresentations in schizophrenia. We also compared the results of this method with traditional general linear model (GLM)-based univariate
nalysis.

ethods: Nineteen schizophrenia and 15 control subjects viewed two runs of stimuli— exemplars of faces, scenes, objects, and scrambled
mages. To verify engagement with stimuli, subjects completed a 1-back matching task. A multivoxel pattern classifier was trained to identify
ategory-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of
oxelwise activity across runs evaluated variance over time in activity patterns.

esults: Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished
lassification accuracy in patients compared with control subjects, 59% and 72%, respectively. In contrast, there was no group difference in
LM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups

howed highly significant correlation between interrun correlations and classification accuracy.

onclusions: Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished
ask performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with
nivariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of

onspecific factors driving these results.
ey Words: Distributed representation, fMRI, multivariate pattern
nalysis, schizophrenia, visual association cortex, visual processing

odern theories on the nature of neural representation
have emphasized a connectionist view in which repre-
sentations are emergent properties of coordinated and

istributed neural activity (1,2). Influenced by these insights and
he availability of methods capable of measuring combinatorial
atterns of activity, we examined the proposition that schizo-
hrenia involves impairment in the stable and reliable activation
f distributed representations.

Traditionally, functional neuroimaging studies have relied on
nivariate analysis, which examines each voxel in isolation and
s primarily designed to identify regions showing differential
ctivity between conditions and groups. These studies have been
nvaluable in identifying and focusing attention on specific brain
egions in the pathophysiology of schizophrenia (3–6). How-
ver, univariate methods provide limited information regarding
he distributed nature of neural processing. While there is a
rowing number of studies in schizophrenia that have high-
ighted the relevance of large-scale connectivity across distant
egions (7–10), there have been few studies on another poten-
ially important aspect of distributed processing, namely the
oding of information in distributed patterns of activity within a
ocal region.
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Basic cognitive neuroscience has begun to develop ap-
proaches capable of assessing, in a combinatorial or multivariate
manner, the distribution of voxels providing optimal differentia-
tion of distinct brain states. In a series of studies, Haxby et al. (11)
and O’Toole et al. (12) demonstrated that the representation of
specific categories of visual objects are coded by category-
specific patterns of activity within the visual association cortex.
Recently, it has been recognized that methods for automated
recognition of spatial patterns, which have been widely em-
ployed in other fields, e.g., biometrics, can be fruitfully applied to
functional neuroimaging (13,14). In studies with healthy subjects,
it has been shown that pattern analysis algorithms can accurately
identify activity patterns associated with specific perceptual
states (11,12,15–17). The viewing of different categories of
stimuli is represented as distinct patterns of activity in the visual
cortex and, conversely, these patterns can be decoded to identify
the category of objects being viewed. The development of these
methods has implications for schizophrenia, as they may be
more amenable than traditional methods to addressing hypoth-
eses based on a distributed connectionist model of brain func-
tioning (13,14).

In this study, we applied a multivariate pattern analysis
algorithm to test the hypothesis that distributed perceptual
representations are impaired in schizophrenia. We studied a
cohort of subjects with schizophrenia and a healthy control
group while they viewed exemplars from diverse categories of
visual stimuli (Figure 1). A multivoxel pattern analysis program
was trained to identify category-specific functional magnetic
resonance imaging (fMRI) activity patterns and then to classify an
independent set of fMRI data. The main dependent measure was
the program’s accuracy in this decoding. High classification

accuracy denotes the presence of category-specific canonical
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attern of activity and the stable engagement of this pattern. We
redicted high classification accuracy for control subjects. For
atients, we predicted lower classification accuracy, reflecting

mpaired coordinated neural activity supporting distributed rep-
esentations. We assessed the stability of the category-specific
atterns by quantifying the voxelwise correlation in activity over
ime and predicted that patients would show diminished interrun
orrelations. And finally, we conducted a parallel set of univar-
ate general linear model (GLM)-based analyses to assess the
resence of nonspecific activation differences between groups
nd to provide insights into differential sensitivity between the
wo methods in detecting group differences.

ethods and Materials

ubjects
Nineteen individuals with schizophrenia (SZ) and 15 healthy

ontrol subjects (C) were studied. Demographic and clinical data
re displayed in Table 1. Data from a subset of these subjects
ave been published in a separate study (18). Patients were
linically stable and outpatients. Diagnostic status was evaluated
ith the Structured Clinical Interview for DSM-IV-Text Revision

SCID-I) conducted by masters- or doctoral-level clinicians and
onfirmed by consensus conference. Symptoms were quantified
ith the Brief Psychiatric Rating Scale (BPRS), Scale for the
ssessment of Negative Symptoms (SANS), Scale for theAssess-
ent of Positive Symptoms (SAPS), Strauss Carpenter Outcome

cale (SCOS), and Global Assessment Scale (GAS). All patients
ere taking antipsychotics with all but one taking atypical
euroleptics. Exclusion criteria for all were IQ � 70, drug or
lcohol dependence or abuse within 3 months of testing, major
edical or neurological illness, significant head trauma, or

ontraindication to magnetic resonance imaging (MRI). Exclu-
ion criteria for control subjects were lifetime diagnosis of Axis I
isorder or first-degree relative with a psychotic disorder. Groups
ere well matched except in years of education, 13.0 � 1.9 versus

igure 1. Visual processing task. The subjects were shown a series of exempl
nd scrambled images of everyday objects (Sc). Within each category block,
o conduct a 1-back match. A fixation baseline (B) was displayed between s
5.9 � 2.6, SZ and C, respectively, p � .05; and IQ, 95.5 � 13.7

ww.sobp.org/journal
versus 110.3 � 6.7, SZ and C, respectively, p � .05. After descrip-
tion of the study, written informed consent was obtained from all
subjects. This study was approved by the Institutional Review
Board (IRB) at the University of California Davis.

Activation Paradigm
Stimuli were presented and responses recorded with E-Prime

(Psychology Software Tools, Inc., Pittsburgh, Pennsylvania;
http://www.pstnet.com). Within each run, there were four series
of stimulus blocks, and in each series, there were four blocks of
stimuli (Figure 1). Within a block, 20 exemplars of faces, scenes,

four categories of visual objects—faces (F), scenes (S), everyday objects (O),
mplars were shown. To verify task engagement, the subjects were required

of category blocks.

Table 1. Demographics

Patients
(n � 19)

Control
Subjects
(n � 15) p

Mean SD Mean SD �.10

Age (years) 33.4 11.1 28.2 7.4 �.10
Gender (% male) 68 53 �.10
Handedness (% right) 95 100 �.10
WRAT 95.5 13.7 110.3 6.8 �.05a

Education (years) 13.0 1.9 15.9 2.6 �.05a

Parental Education
(years) 12.9 3.0 14.9 3.6 �.10

GAS 59.7 9.1
SCOS 9.9 3.7
SANS 1.53 .81
SAPS 1.56 1.04
BPRS 44.5 11.2
Mediations (atypical/

typical) 18/1

BPRS, Brief Psychiatric Rating Scale; GAS, Global Assessment Scale;
SANS, Scale or the Assessment of Negative Symptoms; SAPS, Scale for the
Assessment of Positive Symptoms; SCOS, Carpenter Outcome Scale; WRAT,
Wide Range Achievement Test.
ars of
20 exe
aStatistically significant difference.

http://www.pstnet.com
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veryday objects, and scrambled images of everyday objects
ere displayed. The series were interleaved with a baseline
eriod consisting of a crosshair displayed on a blank background
or 24 seconds. Each subject underwent two runs of this para-
igm. To obtain online verification that subjects were attending
o the stimuli, subjects were required to press two fingers on the
esponse pad when the current image was the same as the image
mmediately preceding it.

RI Data Acquisition and Preprocessing
Images were acquired with a GE Signa 1.5T MRI system

General Electric, Milwaukee, Wisconsin) using single-shot T2*-
eighted echo-planar imaging (EPI) in the anterior commissure-
osterior commissure (AC-PC) aligned axial plane with repetition
ime (TR) of 2.0 seconds, an echo time (TE) of 32 milliseconds,
nd a flip angle of 90°. Twenty-seven interleaved slices for
hole-brain coverage were collected with a 22-cm field of view,

lice thickness of 4.0 mm and a gap of .5 mm, and in-plane
esolution of 3.5 � 3.5 mm. Functional MRI processing was
onducted using SPM2 (Functional Imaging Laboratory, Univer-
ity College London, London, United Kingdom, http://www.fil.
on.ucl.ac.uk/spm) and included slice time correction and six-
arameter rigid body spatial realignment. All subjects displayed

ess than 4 mm of movements and the groups did not differ either
n cumulative [F (6,27) � 1.36, p �.265] or mean movements
F (6,27) � 1.37, p � .262]. To better preserve the spatial configu-
ation of activations in individual subjects, images were not
moothed or spatially normalized into a common space. Coplanar,
1-weighted scans with .88 � .88 mm in-plane resolution were
cquired just prior to functional images.

ehavioral Data Analysis
The “hit rate” performance (number of correct responses

uring the presentation of a 1-back divided by the total number
f 1-back matches) and reaction time (RT) for hits were used to
valuate performance.

ultivariate Pattern Analysis
Data analysis was conducted using the Princeton Multi-Voxel

attern Analysis (MVPA) toolbox (Princeton University, Prince-
on, New Jersey, http://www.csbmb.princeton.edu/mvpa) fol-
owing the methods described in Polyn et al. (17). Details of the
ethod can be found on the MVPA website and in the supple-
ent to the Polyn et al. (17) paper. In addition, two recent

eviews on this method have recently been published (13,14).
he analysis involved three main stages: feature selection and
raining and testing of the automated classifier. Prior to these
teps, the images underwent voxelwise z-scoring of intensity
alues to account for baseline drift and shifting condition regres-
ors by 6 seconds to account for hemodynamic delay in the
lood oxygenation level-dependent (BOLD) signal.

Feature Selection. An anatomic mask was used to constrain
he region in which the multivariate and univariate analyses were
onducted. This mask, defined by the union of the parahip-
ocampal, lingual, and fusiform gyri, limited the analysis to
isual regions most active during visual object processing
18,19). The boundaries of these regions were defined according
o Duvernoy (20) and Duvenoy and Bourgouin (21). The ana-
omical masks were drawn by a single rater blind to diagnosis on
1 coplanar images acquired right before EPI scans for each
ubject. We conducted test-retest reliability analysis on 10 ran-
omly selected subjects. The Spearman-Brown coefficient was

90. Within this region, the feature space was further restricted by
eliminating voxels with low task-related activity assessed by a
voxelwise analysis of variance (ANOVA) of BOLD intensity
across all conditions (face, scene, objects, scrambled images, and
baseline). These less informative voxels serve as sources of noise
and thus impair detection of classifiable patterns. Those voxels
active at a threshold of p � .001, uncorrected, were retained for
inclusion in the subsequent classification analysis. This area
contained an average of 346 voxels per subject (SD � 127).

Training and Testing. These stages were carried out using a
linear pattern classifier following a full cross-validation design:
data from run 1 were used to feature select and train the
classifier, which was then tested on data from run 2, and then run
2 data were used to feature select and train the classifier, which
then tested data from run 1. We employed a two-level (input and
output) backpropogation neural network (NN) classifier. The
input layer consisted of one unit for each voxel in the feature-
selected image. The output layer consisted of units for each of
the five stimulus categories.

During training, data from one run, with each TR labeled by
condition, were fed into the NN. Using a conjugate gradient
variant of the backpropogation classifier, the weights between
input and output layers were adjusted using a minimum square
error algorithm between target categorization and actual catego-
rization. In this way, over many iterations of weight adjustment,
the classifier “learned” the pattern of activation of each stimulus
category. These weighted connections were then applied during
testing to data from the remaining run. Each input of a TR’s
activation pattern resulted in an output layer activation pattern,
with the maximally active output unit being recorded as the
classifier’s guess of the condition of that TR. Accuracy of the
classifier’s guesses during this testing stage (1 for correct, 0 for
incorrect) was averaged across all TRs of each stimulus type.

Interrun Correlations of Activity. A secondary analysis,
what we refer to as the interrun correlations of category-specific
activity patterns, evaluated the stability of activity for each
stimulus type across the two runs. Activity patterns for each
category were represented by a voxelwise statistical map of p
values generated from an ANOVA of the BOLD signal. The
ANOVA contrasted each scan’s signal during the condition of
interest to all other time points. The ANOVA was restricted to the
mask of the visual regions described above. Activity of each
voxel was represented by its p value in a vector with a length
defined by the number of voxels in the anatomic mask. A vector
of this form was generated for each run and stimulus type.
Bivariate Pearson product-moment correlations were then calcu-
lated across the stimulus-specific maps for the two runs. This
correlation value represented the across-run functional stability,
quantified for each stimulus type.

Univariate Analysis
We conducted a parallel set of analyses using univariate

GLM-based methods so that we could compare these results with
those from the multivariate pattern analysis. We chose to analyze
faces because the neural correlate of face processing has been an
increasingly common area of research in schizophrenia, and our
prior work (18), which showed relatively normal univariate
measures of fusiform face area (FFA) activity, suggested that
comparisons between multivariate and univariate analyses of
face processing may provide a good test of the former’s sensi-
tivity. We analyzed the same images preprocessed for multivar-
iate analysis, meaning after slice time correction and realignment,
images were not spatially smoothed or transformed into a

standard space. Instead, analysis proceeded in the subject’s

www.sobp.org/journal
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native space” (18,19). Univariate analysis was conducted in
oxBo (University of Pennsylvania, Philadelphia, Pennsylvania,
ww.voxbo.org). The convolution matrix included a time-do-
ain representation of the 1/f power structure (22,23), a low-
ass filter to remove frequencies above .45 Hz, and nuisance
ovariates to model an intercept and global signal orthogonal to
he covariates of interest. Activity was estimated using a four-
ovariate model, a covariate for each of the stimulus categories,
onvolved with a canonical hemodynamic response function.
e performed linear contrasts of face-scenes and face-objects to

dentify face-specific voxels within the anatomically defined
egion described above, thresholded at a t value corresponding
o p � .05, Bonferroni corrected for multiple comparisons (24).
he dependent measures were the maximum and mean param-
ter estimates (i.e., beta values) and volume of the FFA (number
f above-threshold voxels). These measures were first calculated
or each subject and then they were group averaged for a random
ffects between-group analysis with two-sample t tests (18,19).

esults

Both groups performed the task well, but control subjects
howed significantly higher accuracy than patients, 93% versus
1% (t � �5.5, p � .001). For all categories, control subject
erformance was higher, and for all but the everyday objects, the
ifferences were significant. Control subjects responded faster,
ut RT differences were not significant (MC� 565 msec, SDC� 96
sec, MSZ� 617 msec, SDSZ � 117 msec, p � .17). For faces,

here was a nonsignificant difference in reaction time (t � 1.8,
� .08). These and more detailed results are displayed in Table 2.
Accuracy of the pattern classifier was significantly different

etween groups (Figure 2). Overall, activity patterns in control
ubjects were more accurately classified than in patients, with
verages of 71.7% and 58.6%, respectively. For all but one
ategory (everyday objects), accuracy was significantly higher for

Table 2. Behavioral Results

Accuracy—% (SD)

Control Subjects SZ

Face 96 (6) 86 (17)
Scene 93 (10) 78 (21)
Object 94 (6) 89 (19)
Scrambled 86 (11) 72 (27)
Total 93 (6) 81 (19)

RT, reaction time; SZ, schizophrenia.
aStatistically significant difference.
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igure 2. Multivoxel pattern analysis classification accuracy. The outcome,
n terms of proportion of correct classification, for patients and control
ubjects across all stimulus types. *Significant difference between groups,

wo-tailed t test, p � .05. C, control subjects; SZ, schizophrenia.

ww.sobp.org/journal
control subjects (t � 2.1, p � .05). An ANOVA showed a main
effect of group (F � 12.2, p � .001). We reanalyzed the data with
the baseline condition excluded and these results were virtually
identical to the above results.

Results in Figure 3 show a significant correlation between
classification accuracy across all conditions and behavioral per-
formance. For patients, behavioral accuracy (r [n � 19] � .48,
r2 � .23, p � .05) and RT (r [n � 19] � �.48, r2 � .23, p � .05)
were significantly correlated. For control subjects, RT correlated
significantly with classification accuracy (r [n � 15] � �.52, r2 �
.27, p � .01) but behavioral accuracy did not, possibly due to
ceiling effects. The correlation between behavioral performance
and pattern classification accuracy remained significant after
controlling for possible confounds of age, subject and parental
education, and Wide Range Achievement Test (WRAT) scores:
classification accuracy and RT [r (df � 25) � �.526, r2 � .28, p �
.05]; classification accuracy and behavioral accuracy [r (df � 25) �
.505, r2 � .26, p � .05]. The pattern classification results did not
correlate with any of the clinical measures.

To explore the possibility that increased temporal variability
in activity contributed to impaired classification in patients, we
conducted a secondary analysis measuring the correlation of
voxelwise activity across runs (Figure 4). Results showed that
interrun correlations were lower for patients for all stimulus
categories, except objects. This difference was significant for
faces (t � �2.4, p � .05) and scenes (t � �2.3, p � .05) but
nonsignificant with baseline (t � �2.0, p � .057). An ANOVA of
the interrun correlations showed a nonsignificant effect of group
(F � 3.7, p � .065). There was very high correlation between
interrun stability of engagement of activity and classification
accuracy in both groups, patients (r[n � 19] � .93, r2 � .86,
p � .01) and control subjects (r [n � 15] � .89, r2 � .79, p � .01).

A univariate, GLM-based analysis of the same data was
conducted to examine the impact of nonspecific factors in the
multivariate results and to allow comparisons between these
methods. We focused on faces because we predicted, based on
prior results (18), that traditional univariate measures would not
yield significant differences between groups, thereby offering a
point of contrast between the univariate and pattern classification
approaches. In the contrasts of face versus nonface blocks, e.g.,
face-scenes and face-objects, there was no group difference in
maximum beta [F (1,32) � .77, p �.39], mean beta [F (1,32) � 1.4,
p � .224], or voxel count [F (1,32) � 1.2, p � .25] (Table 3) within
regions showing above-threshold activity (p � .05, Bonferroni
corrected for multiple comparisons). These results suggest that
reduced classifier accuracy in patients is not simply due to a
nonspecific factor, such as reduced signal-to-noise. These results
also highlight a divergence between multivariate and a standard
univariate analysis with the former showing group differences in

RT—msec (SD)

Control Subjects SZ p

2a 525 (109) 601 (137) .08
1a 569 (109) 602 (74) .32
6 567 (109) 616 (131) .25
5a 601 (95) 651 (198) .34
1a 565 (96) 617 (117) .17
p

.0

.0

.2

.0
�.0
the setting of undetectable differences in the latter.

http://www.voxbo.org


D

h
(
w
l
t
t
i
s
r
p
p
s
g
r
t

F
v
t
c

J.H. Yoon et al. BIOL PSYCHIATRY 2008;64:1035–1041 1039
iscussion

The accuracy of a multivariate pattern classifier was high for
ealthy subjects and in close agreement with other studies
15,25). Classification accuracy was significantly lower in subjects
ith schizophrenia. In both groups, there was an inverse corre-

ation between classification accuracy and reaction time, and in
he schizophrenia group, there was a positive correlation be-
ween classification accuracy and behavioral accuracy. Dimin-
shed voxelwise correlation in activity across runs in patients and
trong correlation between this measure and classification accu-
acy suggest that greater variability in engaging canonical activity
atterns could be the cause of the lower classification accuracy in
atients. There were no differences between groups in the
tandard GLM-based univariate measurements, demonstrating
reater sensitivity of the pattern analysis method. The univariate
esults also suggest that nonspecific factors are not confounding
he pattern analysis findings.

igure 4. Interrun correlation in univariate activity. Interrun correlation
alues (Pearson’s r) for patients and control subjects across all stimulus
ypes. *Significant difference between groups, two-tailed t test, p � .05. C,

ontrol subjects; SZ, schizophrenia.
These results point to a possible neural mechanism of im-
paired visual information processing in schizophrenia—the in-
stability of cortical networks and its failure to support coherent
representations and their dependent cognitive processes. The
relationship between category-specific representations, cogni-
tion, and behavior in healthy subjects was examined in a recent
study by Polyn et al. (17). This study demonstrated that the time
course of engagement of object-specific activity patterns, which
had been shifted by 6 seconds to account for the lag in the BOLD
signal, preceded the recall of an object. For example, when
recalling a face, the face-specific pattern of activity is engaged
prior to the actual response execution. The temporal order of
events strongly suggests that the engagement of neural represen-
tations shapes the recall process. A logical extension of this
model is to propose that the fidelity of representations influences
the proper execution of dependent cognitive processes. Accord-

Figure 3. Correlations between classification accuracy
and behavioral measures. (A) Control subjects’ and (B)
patients’ behavioral accuracy in the 1-back task versus
classification accuracy. (C) Control subjects’ and (D) pa-
tients’ reaction times (RT) in the 1-back task versus classi-
fication accuracy.

Table 3. Univariate Results

Contrast Measure Group Mean
Standard
Deviation

Face-Scene No. voxels SZ 25.2 30.7
C 32.7 26.4

Mean Beta SZ .019 .010
C .022 .008

Maximum Beta SZ .066 .053
C .074 .051

Face-Object No. voxels SZ 12.5 14.6
C 19.5 14.1

Mean Beta SZ .017 .010
C .023 .011

Maximum Beta SZ .045 .050
C .065 .043
C, control subjects; SZ, schizophrenia.

www.sobp.org/journal
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ngly, we interpret our findings as suggesting that the impairment
n category-specific canonical representations is the reason that
atients cannot perform the matching task and is not merely the
eflection of poor performance. The decrement in stability of
epresentations during baseline fixation blocks, where perfor-
ance is not an issue, is consistent with this supposition.
owever, these statements about causality must be balanced by
n acknowledgement that they are based on correlational results
nd more definitive empirical studies in the future are required.

An important issue related to the model of information
rocessing deficits in schizophrenia is whether impairments
eflect intrinsic neural abnormalities within the visual cortex or
re the result of perturbations in top-down influences. Our
indings could be accommodated by either model: a top-down
ccount could be consistent with our findings if impaired coher-
nce in activity patterns were due to a deficit in top-down signals
nd their failure to stabilize posterior networks (1,26). This
otential mechanism is consistent with the task demands of this
xperiment, the 1-back, which imposes a low working memory
oad. According to contemporary theories and empirical findings
elated to prefrontal cortex (PFC) interaction with sensory cortex
uring working memory (2,19), a top-down signal from the PFC
odulates activity and facilitates processing within the visual

ortex during visual working memory. Consequently, altered
op-down signals could contribute to impairments in visual
etworks. According to the bottom-up model, our findings
ould be further evidence of impaired neural function in sensory

ortex, which then gives rise to higher-order processes in a
eed-forward manner (27). This study was not designed to
ompare these competing models and the resolution of this issue
ill be the subject of future studies.
The comparison between univariate and pattern analysis

esults revealed some of the advantages of the latter approach,
hich is often suggested as a more sensitive method (14). The
attern analysis results were consistent with behavioral results
nd revealed group differences in activity, while traditional
nivariate analysis did not. The divergent findings between
nalyses cannot be attributed to differences in processing of the
MRI data, as they were processed identically across analytic
treams. For pattern classification, spatial smoothing or transfor-
ation into a common template space is usually avoided to
reserve as much spatial resolution as possible. Therefore, to
ontrol for possible effects of differences in image processing on
ur results, we did not follow the common practice of normal-
zation into a standard space for group comparison in the
nivariate analysis.

Since we controlled for differences in image processing, the
nherent differences in the analytic approaches likely account for
he divergent results. While univariate analysis identifies strongly
nd specifically responsive voxels, pattern analysis is sensitive to
he spatial combination of voxels. Consequently, a voxel that
ay be weakly active, i.e., subthreshold in the traditional uni-

ariate sense, may in the aggregate or in combination with others
rovide useful information in the pattern analysis approach (14).

The largely uniform difference between groups across condi-
ions brings up the possibility of nonspecific, global factors such
s neural excitability as the cause of the differential classification
ccuracy. This potential confound is addressed by two findings.
irst, there was an absence of group differences in the univariate
easures of spatial extent and activation levels. Second, in the

veryday objects category, in the context of very good and nearly
quivalent behavioral performance across both groups, there

as no significant group difference in classification accuracy and

ww.sobp.org/journal
interrun correlations. If nonspecific factors were driving the
results, there should be a group difference in all categories. The
greater interrun correlation among patients for this category
suggests that the absence of difference is not just due to lack of
power.

This study adds to a rapidly growing list of publications
documenting impairments in what may be broadly categorized
as neural connectivity in schizophrenia (7). Prior reports have
identified deficits in long-range connectivity, either structural
(28) or functional, with the latter being found during the resting
state (8) and during cognitively activated states (9,10,29). We
interpret the findings of disturbances in distributed representa-
tions revealed by pattern classification as a consequence of
impaired local connectivity. While functional neuroimaging stud-
ies using traditional univariate analysis have provided very
important information on the neural basis of schizophrenia,
multivariate pattern analysis may be better suited to questions
related to the distributed nature of neural representations and
processes. As suggested by this study, the broad application of
multivoxel pattern analysis to schizophrenia may yield novel
insights into the underlying neural impairments leading to be-
havioral and cognitive deficits of this disorder.
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